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ABSTRACT: Thresholds of soil moisture exist below which the atmosphere becomes hypersensitive to land surface dry-
ing, inducing thermal feedbacks that can exacerbate heatwaves. Realistic representation of threshold transitions in forecast
models could improve extreme heat predictability and understanding of the role of land–atmosphere coupling. This study
evaluates the performance of several forecast models from the Subseasonal Experiment (SubX) and several prototype ver-
sions of the Unified Forecast System (UFS) in their representation of threshold transitions by validation against reanalysis
data. A metric of skill (true skill score) is applied to soil moisture breakpoint values, which mark the transition to heatwave
hypersensitivity for drying soils. Forecast models have poor skill at being initialized on the correct side of the breakpoint,
but show improvement when normalized to account for deficiencies in their soil moisture climatologies. Regionally, models
performed best in the U.S. Northwest and worst in the Southwest. They effectively capture the tendency of western regions
to spend more summer days in the hypersensitive regime than the eastern United States. Models represent well extreme
heat as a consequence of atmospheric initial state for the first week of the forecast, but struggle to represent the soil mois-
ture feedback regime. Forecast models generally perform better at extreme heat prediction when they are already dry and
in the hypersensitive regime, even when erroneously so, implying that errors or biases exist in model parameterizations.
Nevertheless, composite analysis shows encouraging model performance of the “hit” category, suggesting that an improve-
ment in soil moisture initialization could further improve extreme heat forecast skill.
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1. Introduction

In recent years, efforts have been made to improve our un-
derstanding of the characteristics of heatwaves in a changing
climate. Numerous studies have been undertaken to gain
knowledge on how the frequency, duration, and magnitudes of
heatwaves evolve in light of the present increase in global mean
temperatures, due largely to anthropogenic causes (Peterson
et al. 2013; Perkins-Kirkpatrick and Lewis 2020; Schoof et al.
2019; Hirsch et al. 2021).

Models have made strides in simulating heatwave climatol-
ogy and frequency but struggle to accurately depict the persis-
tence and magnitudes of these events (Vautard et al. 2013;
Lhotka et al. 2018). This inadequacy in our current abilities to
represent extreme conditions has inspired the need for further
investigation into the mechanisms that drive heatwaves, in-
forming our understanding of predictability. Research on the
connection between soil moisture and extreme hot tempera-
tures has shown that low soil moisture is a potential precursor
for intensive heatwave episodes (Herold et al. 2016) and that
soil moisture memory is linked to heatwave persistence
(Lorenz et al. 2010). Hence, proper initialization of soil moisture

in forecast models could prove to be a crucial step in the ad-
vancement of heatwave predictability (Sillmann et al. 2017).

Specifically, soil moisture–temperature coupling relation-
ships have been investigated in both observations and models
using a variety of techniques (e.g., Ford and Quiring 2014;
Gevaert et al. 2018), and these studies reveal that the precise
representation of land–atmosphere feedbacks via a detailed
expression of the soil moisture–temperature coupling rela-
tionship is an essential component for the predictability of hot
extremes. Soil moisture is connected to daytime maximum
temperature through its control on the partitioning of surface
energy between sensible and latent heat fluxes (Miralles et al.
2012). When soil moisture over a region drops beyond a criti-
cal threshold (what we call here the breakpoint), the latent
heat of evaporation substantially shuts down and the atmo-
sphere responds to the land surface entirely through transfer
of energy through sensible heat flux. The loss of evaporation
as a negative feedback to heating moves the region into a hy-
persensitive regime where the atmosphere is primed for more
intense heatwaves, provided the necessary atmospheric circu-
lation conditions are in place (Benson and Dirmeyer 2021;
Dirmeyer et al. 2021).

The idea of such soil moisture–climate regimes has been pre-
viously introduced in studies of the role of soil moisture in the
variation of evapotranspiration (Koster et al. 2009a; Seneviratne
et al. 2010; Schwingshackl et al. 2017; Haghighi et al. 2018;
Denissen et al. 2020; Wu and Dirmeyer 2020; Sehgal et al.
2021). These studies have shown that there exist three distinct re-
gimes of soil moisture–evapotranspiration relationships. There is
a dry regime where soil moisture is too depleted to contribute to
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evapotranspiration, a wet regime where evaporation is at the po-
tential rate and soil moisture fluctuations have no impact, and a
central transitional regime where soil moisture variations directly
modulate evapotranspiration and has some feedback on the
atmosphere.

Based on this framework, the study of Benson and Dirmeyer
(2021) demonstrated the existence of comparable regimes based
on the relationship between soil moisture and maximum daytime
temperature. Benson and Dirmeyer (2021) showed that there is a
wet soil, weakly coupled regime where there is sufficient avail-
ability of soil moisture and changes in near-surface air tempera-
ture are unaffected by soil moisture variation. In the transitional
regime, decreasing soil moisture leads to diminishing latent heat
flux, and increasing sensible heat flux, resulting in a net soil
moisture feedback on maximum temperature similar to the
transitional regime of evapotranspiration, but with temperature
increasing as soil moisture declines. The third regime described
as the hypersensitive regime is the state when soil moisture is
sufficiently low that latent heat of evaporation shuts down, re-
sulting in sensible heat flux being the dominant, unopposed
driver of energy transfer from the land to the atmosphere. The
distribution of soil moisture breakpoint values across the United
States exposes regions that are more likely to experience the hy-
persensitive regime as soil moisture is depleted. These are re-
gions where heatwaves can potentially persist or intensify as a
result of subsequent thermal land–atmosphere feedback.

This understanding provides a way of evaluating subseasonal
to seasonal (S2S) forecast models, to determine their proficiency
in predicting heatwaves by observing their representation of
breakpoints and soil moisture initialization relative to the break-
points. Improving prediction of extremes within S2S time scales
is valuable to decision makers and stakeholders who rely on this
information to help mitigate the impact of weather and climate
extremes on society.

In this study, an evaluation of S2S forecast models from the
Subseasonal Experiment (SubX) forecast model suite}a multi-
model project aimed at developing better research to operation
models for S2S prediction (Pegion et al. 2019) and the Unified
Forecast Systems S2S model prototypes (Xue et al. 2021) is car-
ried out, with the intention of detailing the role of soil moisture
and breakpoint representation in the skill of extreme heat day
forecasts and heatwave predictability. The focus of this study is
on whether the skill of breakpoint representation reflects on the
skill of heatwave prediction. Our hypothesis is that accurately
capturing the amount of time any given region spends in the hy-
persensitive regime as seen in observations corresponds to bet-
ter skill in extreme heat day forecasts.

Section 2 details the data and methodology used in this paper,
while section 3 lays out the results found in the study showing the
models’ distribution of breakpoint estimates across the United
States and their corresponding skill scores. Section 4 contains a
discussion of findings and the conclusions reached.

2. Data and methods

The region of focus is the contiguous United States (CONUS)
and immediately adjacent regions of Mexico and Canada. Anal-
yses are carried out over the summertime [June–August (JJA)]

across the years available in both the reanalysis and forecast
models’ products. Forecasts are initialized from May through
August but only forecasts that validate within JJA are used in
the study. With the forecast models initialized at varying dates
and frequencies, careful attention has been put into guarantee-
ing that validation dates line up accurately and that, as closely as
possible, comparisons have been made between comparable
forecast leads.

a. ERA5

The ERA5 (Hersbach et al. 2020) is used in this study as
“verification” to assess the performance of the forecast mod-
els. Daily maximum 2-m air temperature and total column soil
moisture (0–2.89 m) from the years that overlap within the
model verification period (1999–2017) are obtained from a
31-km-resolution grid over the contiguous United States. The
ERA5 is the first to employ remotely sensed soil moisture ob-
servations for assimilation}namely, soil moisture correlated
backscatter data from the Advanced Scatterometer (ASCAT)
onboard the MetOp-A/-B satellites. While this is beneficial, it is
to be noted that one of the drawbacks to using satellite observa-
tions for data assimilation in the ERA5 is the simultaneous as-
similation of other variables such as screen temperature and
relative humidity can negatively affect the soil moisture esti-
mates (Muñoz-Sabater et al. 2019). The availability of observa-
tions from ground stations also helps to constrain the 2-m
temperature values, leading to a more reliable temperature prod-
uct output, particularly over regions where there is a high density
of in situ measurements such as CONUS.

The ERA5 dataset is selected for comparison with the fore-
cast models for this analysis because of its reliable soil moisture
breakpoint representation and spatial coverage. Recent studies
have shown that ERA5 soil moisture and surface fluxes validate
well against in situ observations over CONUS (Benson and
Dirmeyer 2021) and Europe (Dirmeyer et al. 2021) in scenarios
of extreme heat.

b. Forecast models

1) THE SUBSEASONAL EXPERIMENT (SUBX) PROJECT

The SubX project is a multimodel endeavor to provide ret-
rospective and real-time forecasts to understand the predic-
tive skill of climate events at lead times out to 4 weeks
(Pegion et al. 2019). Participating SubX models provide fore-
casts for at least 32 days after initialization and provide daily
output interpolated to a common 18 3 18 global grid. Only
hindcasts are used for this experiment. Interpolation was per-
formed without regard for underlying ocean versus land sur-
face, so grid cells around coastlines mix the two surfaces and
may be questionable. Soil moisture and surface fluxes are not
available from all models involved in the SubX project. Fur-
thermore, the SubX specifications for volumetric soil moisture
data output is for the entire column and surface soil moisture
data are unavailable for all but one model. Therefore, column
soil moisture is used in this study only from models that have
a constant column depth. Two models from the SubX suite
are used in this study as listed in Table 1. They are the NCEP
Environmental Modeling Center, Global Ensemble Forecast
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System (EMC-GEFS) and the National Oceanic and Atmo-
spheric Administration, Earth System Research Laboratory,
Flow-Following Icosahedral Model (ESRL-FIM). The EMC-
GEFS model has T574 horizontal resolution (approximately
30 km), and the Noah land surface model (LSM; described
below) is initialized with initial conditions from the Global
Land Assimilation System (GLDAS). The ESRL-FIM model
at ;60-km resolution also runs a version of the Noah LSM
but with initial conditions from the Climate Forecast System
Reanalysis (CFSR).

2) THE UNIFIED FORECAST SYSTEM (UFS)
SUBSEASONAL TO SEASONAL (S2S) PROTOTYPES

The UFS S2S prototypes are part of NOAA’s research to op-
erations (R2O) effort to produce the next generation of weather
and climate forecast models for the National Weather Service.
Each prototype global model is a step toward a final operational
version and sets of individual (no ensembles) subseasonal retro-
spective forecasts have been produced as part of the development
effort to assess model behavior, biases and skill. The prototypes
consist of a four-way coupled atmosphere–ocean–ice–wave
model with ;25-km horizontal resolution and 64 vertical levels
for the atmospheric component. The ocean and ice model com-
ponents operate at a 1/48 resolution (Xue et al. 2021). Prototypes
5 and 6 (P5 and P6) employ a version of the Noah LSM similar
but not identical to those in GEFS or FIM. All versions of the
Noah LSM are a vertically one dimensional four-layer model
that represents surface and subsurface layer processes including
energy processes at the surface (Ek et al. 2003). Beginning with
prototype 7 (P7), UFS uses the candidate GFSv17 physics pack-
age that significantly includes a change of LSM to Noah with
multiple parameterizations (Noah-MP), which is designed to im-
prove the simulation of water and heat exchanges over the land
surface (Barlage et al. 2015; Salamanca et al. 2018). Among other
changes, this physics package also has an improved boundary
layer parameterization. JJA maximum temperature and soil
moisture from the retrospective forecasts for years 2011–17 from
P5, P6, and P7 are used in this study. The forecasts are initialized
on the 1st and 15th of every month. The frequency and years cov-
ered are both substantially smaller than for the SubX models.
The UFS prototypes are included in this analysis to improve sam-
ple size, due to the limited number of SubX models with output
datasets that are relevant to this analysis, but also as an opportu-
nity to provide evaluation of the performance of the UFS model
while still under development.

c. Breakpoint estimation

To characterize the relationship between extreme dry con-
ditions and elevated temperature, soil moisture breakpoint
analyses have been carried out on the ERA5, the S2S forecast

models, and the UFS prototypes using the methodology de-
scribed in Benson and Dirmeyer (2021). The calculated
breakpoint indicates a threshold for soil moisture below
which the land–atmosphere coupling feedback shifts into a
hypersensitive regime with regard to daytime maximum tem-
perature (Fig. 1), exhibiting a significantly steeper slope of
temperature increase with declining soil moisture.

Breakpoint estimation involves fitting of a regression model of
daily values of maximum temperature against soil moisture with
piecewise linear relationships by estimating optimal changepoints
(minimizing fitted temperature mean square error) in the slope
of time series at each grid cell over the study area. This is done
across all dates in JJA using segmented regression (Muggeo
2008). For this study, as in Benson and Dirmeyer (2021), the
Python SciPy “optimize” package’s function “curve_fit” is em-
ployed. Four quantities are estimated: the values of the break-
point along the abscissa and ordinate and the slopes of the two
lines intersecting at the breakpoint.

The piecewise linear regression is applied separately at
each grid cell of ERA5 and each forecast model for the inde-
pendent variable daily mean soil moisture and the dependent
variable daily maximum 2-m temperature. The breakpoints of
the forecast models are investigated as a function of the fore-
cast lead times based on dates of validation falling within JJA,
not the date of forecast initialization.

d. Extreme heat days

An extreme heat day (EHD) is defined in this study as any
day that exceeds the 90th percentile for daily maximum 2-m
air temperature during JJA in the period of data record, de-
fined at each grid point relative to its own climatology, and
without consideration for persistence over some number of
consecutive days. This definition only takes into consideration

TABLE 1. Specifications for the SubX models used in this study, showing the number of ensembles, length of forecast, time span, soil
moisture availability, and model grid resolution.

SubX model Ensemble members Forecast length (days) Years Initialization frequency (days)

EMC-GEFS 11 35 1999–2016 7
ESRL-FIM 4 32 1999–2017 7

FIG. 1. Schematic illustrating breakpoints of soil moisture for maxi-
mum temperature.
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the physical response of air temperature to surface level heat-
ing on a day-by-day basis, potentially dictated by soil mois-
ture, without accounting for duration, thermal comfort, and
other variables that would typically constitute a classical heat-
wave definition. In this way, the impact of land–atmosphere
coupling on increasing temperatures can be approached from
a process-based standpoint: Is soil moisture a contributing fac-
tor to extreme heat? For the forecast models, the extreme
heat day is also calculated as a function of lead time.

e. Skill scores

A set of dichotomous skill scores are employed for the verifi-
cation of model skill. A simple contingency table (Table 2) is
created from the distribution of the frequency of a combination
of yes and no forecasts and validations for a predetermined
threshold. There are four categories: “hits” and “correct neg-
atives” indicate correct forecast of the occurrence or nonoccur-
rence of an event respectively. “Misses” are events that were
not forecasted, and a “false alarm” is a model forecast of an
event that did not occur. The event in this study is defined as a
day when soil moisture lies below the breakpoint, or an EHD
for temperature. The ensemble members for the GEFS and
ESRL models were aggregated during the calculation of skill
scores to increase their sample sizes.

The true skill score (TSS; also called the Hanssen and
Kuipers discriminant) is one of two dichotomous skills scores
used in this analysis:

TSS 5
hits

hits 1 misses
2

false alarms
false alarms 1 correct negatives

:

(1)

TSS ranges from 21 to 1. A score of 0 indicates the threshold
for no skill (Woodcock 1976). TSS does not differentiate be-
tween the ability to predict events and nonevents. It is there-
fore less sensitive to event frequency and useful in verifying
forecasts with varying climatology (Tartaglione 2010).

The equitable threat score (ETS; also called the Gilbert
skill score) is also utilized:

ETS 5
hits 2 hitsrandom

hits 1 misses 1 false alarms 2 hitsrandom
, (2)

where

hitsrandom 5
(hits 1 misses)(hits 1 false alarms)

total
: (3)

ETS ranges from21/3 to 1. A score of 0 indicates no better than
a random forecast (Woodcock 1976). ETS penalizes the model
for missing events. Hence, in the forecast of rare events like the
tail of a distribution such as extreme heat, ETS produces lower
forecast skill scores that might be misleading (Stephenson et al.
2008; Tartaglione 2010). However, when there are larger forecast
errors, the uncertainty of ETS is reduced when compared to TSS
uncertainties. Stanski et al. (1989) provides greater detail on these
verification methods. The skill scores are evaluated as a function
of forecast lead times just like with the breakpoint estimates.

In this study, contingency tables are constructed based on two
different dichotomous categorizations. First, the soil moisture val-
ues for each model forecast at each grid cell are examined to vali-
date whether they fall below or above its breakpoint. On any
given day at a particular grid point, if the model soil moisture is
on the same side of its breakpoint as ERA5, it is considered to be
skillful. Since our interest is in extreme heat and we assume that
correlates with dry soils, we define a “hit” as a match on the dry
side of the breakpoint, and a “correct miss” as a match on the
wet side. The values of model breakpoint values are not directly
compared to those from the reanalysis because soil moisture is
derived in the models through a variety of methods, and different
LSM volumetric soil moisture ranges vary even for the same loca-
tion due to differences in the parameterizations (Koster andMilly
1997; Koster et al. 2009a) and can also be seen in Fig. 1. A good
skill score indicates that a model is able to effectively capture the
soil moisture regime and the shifts as they occur as part of the
land–atmosphere coupling relationship.

Second, the skill of the forecast models’ extreme tempera-
tures is also assessed by comparing the extreme heat day of the
models to the reanalysis. Whereas the number of days on one
or the other side of soil moisture breakpoint can vary greatly
with location or across models, our definition of extreme heat
days ensures a fixed ratio of 1:9 or 10% between columns or
rows. The skill of each model is investigated as a function of the
forecast lead time. For both soil moisture and temperature, skill
at lead 0 is largely a reflection of the quality of model initializa-
tion, which is also crucial for the model’s forecast skill.

Composites are made combining the contingency tables to
determine if the skill of breakpoint estimation has any influence
on the skill of extreme heat forecasts. Extreme heat day skill
scores are calculated in four subsets using the results of the con-
tingency table (Table 2) for breakpoint skill. The extreme heat
days skill score for when the soil moisture relative to its break-
point forecast was a hit, miss, false alarm, and correct negative
is determined. This means that for each model, the extreme
heat day skill is assessed for when the model is accurately versus
inaccurately in the hypersensitive regime. Composite time series
of the skill scores are generated for each element of the contin-
gency table relative to the forecast lead time. Figure S1 in the
online supplemental material presents a flowchart of the meth-
ods described in section 2c through section 2e.

3. Results

a. Soil moisture breakpoint climatology

Figure 2 displays the JJA mean volumetric soil moisture
values from the initial states of the S2S models (Figs. 2a,b)
and UFS prototypes (Figs. 2c–e), with the climatology of the

TABLE 2. Contingency table for categorizing features of forecast
performance.

Validation

Yes No

Forecast Yes Hits False alarms
No Misses Correct negatives
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ERA5 (Fig. 2f). The soil moisture climatology from the reanal-
ysis reveals dry soils in the southwestern region of the United
States and the Great Plains. The eastern portion of the study
area is wetter with higher values of soil moisture in the Missis-
sippi Basin stretching out to the U.S. East Coast. The U.S. West
and Northwest regions also have wetter soils due to the influ-
ence of the northern Pacific Ocean storm tracks on precipitation
over that region. Mean soil moisture values from all forecast
models and prototypes exhibit varying magnitudes and spatial
structures for their soil moisture climatologies. However, all
models display a west–east gradient of increasing wetness, but
appear to have mean values that are significantly drier than
ERA5.

The differences among the UFS P5 and P6 and the UFS P7
prototypes are largely a result of the changes in the LSM
from P6 to P7. The summer soil moisture climatology in Fig. 2
highlights the variations in the models’ soil moisture estimates
and could potentially dictate the sensitivity and regime shifts
in the models. Total column volumetric soil moisture is not
ideal as subsurface soil moisture can decouple from the

surface in dry conditions (Qiu et al. 2016) and previous results
have shown that breakpoint values are mainly driven by the
influence of surface soil moisture changes on sensible heat
flux (Benson and Dirmeyer 2021). However, latent heat flux
and the wilting point also play an important role in breakpoint
estimation, involving water content across the column. The
shutting down of latent heat flux, which is essential for the
breakpoint process, involves the accessibility of root zone soil
moisture for evapotranspiration and is a function of the soil
type. Because of this, the breakpoints of surface soil moisture
based on sensible heat flux and latent heat flux are not identi-
cal (Benson and Dirmeyer 2021). Yet they are similar, hence
using the entire column soil moisture should provide useful
information.

Figure S2 in the online supplemental material shows the
mean soil moisture climatology minus the breakpoint estimates
relative to maximum temperature. The breakpoint values in
ERA5 seem to be near or slightly lower than the summertime
climatology of soil moisture, particularly along the Great Plains
and western Mexico (Fig. S2f). Otherwise, the mean summer

FIG. 2. Maps of mean volumetric soil moisture (m3 m23) June–August (JJA) climatology for (a),(b) GEFS and ESRL
models; (c)–(e) UFS P5, P6, and P7 prototypes; and (f) ERA5, used as verification.
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climatology of soil moisture for ERA5 (Fig. 2f) is very close to
the breakpoint values. Regions in the West and some areas of
the southeastern CONUS particularly show breakpoint values
that are higher than the summer climatological soil moisture
values, which would imply that such regions spend the majority
of the summer in the hypersensitive regime.

At initialization, the GEFS model shows breakpoint esti-
mates that are mostly equal to or drier than their average soil
moisture value except in the South (Fig. S2a). The ESRL model
(Fig. S2b) is similar to the reanalysis but the breakpoint values
over the Great Plains appear to be about equal to the average
soil moisture values. The lower values of breakpoints tend to oc-
cur in the Midwest between the Mississippi River and the Appa-
lachians. The UFS prototypes (Figs. S2c–e) show breakpoint
values that are generally higher than the summertime average
soil moisture except in the southern Great Plains, south of the
Great Lakes, and Southeast for UFS P5 and P6. The change in
LSM in UFS P7 is evident as it has lower breakpoint values
than its previous iterations but does not show the lower

breakpoint values in the Great Plains. The pattern of break-
point distribution in the ERA5 is most closely mirrored by the
GEFS model in regard to the lower breakpoint values in the
Great Plains.

Regions in the central United States away from the coasts
are often regions where breakpoint values are below the cli-
matological mean soil moisture value. There are studies that
have identified the Great Plains as a transition zone between
the dry and moisture-limited regimes that is a hotspot of
land–atmosphere coupling (e.g., Koster et al. 2009b; Dirmeyer
2011).

The fraction of all summer days that are in the hypersensitive
regime (Fig. 3) quantifies how often a location is preconditioned
to experience potential soil moisture feedback-driven intensifica-
tion or persistence of extreme heat days. Most of the United
States has a large fraction of the summer days in the hypersensi-
tive regime in ERA5 (Fig. 3f). Though not uniformly true, much
of the Mississippi basin tends to have relatively few days that are
in the hypersensitive regime. The overall zonal gradient, which

FIG. 3. Maps of the fraction of JJA days in the hypersensitive regime (relating daily maximum 2-m air temperature
to soil moisture) for (a),(b) GEFS and ESRL models at lead 0; (c)–(e) UFS P5, P6, and P7 prototypes at lead 0; and
(f) ERA5.
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ranges westward into regions that spend more than half the sum-
mer days in the hypersensitive regime, has also been seen clearly
in surface layer soil moisture breakpoint estimates (Benson and
Dirmeyer 2021). Regardless, the regions west of the Great Plains
as well as parts of the southeastern United States appear to have
many grid cells that spend more than half of summer days on the
dry side of the local breakpoint in ERA5.

This pattern is generally replicated in the forecast models, al-
beit with differing strengths. GEFS (Fig. 3a) does not produce
some of the low values in the central United States seen in
ERA5. The ESRL model (Fig. 3b) tends to miss the low frac-
tions in the Mississippi Basin apparent in other models and
ERA5, placing them instead along the Gulf Coast. The UFS
models (Figs. 3c–e) do better at matching the pattern of the
fraction of hypersensitive days from the reanalysis (Fig. 3f).
They all have high values in the West, low values in the central
United States, and high values in the eastern portion of the
United States. The UFS forecasts also seem to match ERA5
better across each iteration from P5 to P7 in this metric.

The low values over the Mississippi basin suggest that one
factor that determines whether a region is in the hypersensitive
regime is the amount of surface soil water content that is readily
available for evapotranspiration. This is consistent with the idea
that having higher fractions of hypersensitive days is driven by
the lack of available soil water for evapotranspiration.

b. Breakpoint skill

Typically, dichotomous skill scores are implemented to com-
pare forecasts to validation over a fixed threshold that allows
for the same fraction in both datasets to be compared, and the
possibility for a perfect score to be achieved. For example, the
extreme heat validation compares the top 10% of maximum
temperature in the forecast to the same percentile in validation

data, and a perfect model would mean that in both datasets the
thresholds are exceeded on exactly the same days. In a case
where the percentage of validating events does not match the
percentage of forecast events, the forecast cannot achieve a per-
fect score, hence the interpretation of model skillfulness needs to
be reconsidered. As illustrated in Fig. 3, this is usually the case
for the number of hypersensitive days. Figure 4 illustrates how
different counts for “hits” and “correct misses”}the diagonal of
the contingency table that indicates the number of events and
nonevents accurately predicted by the model (Table 2)}affect
the maximum skill score values.

The ETS score (Fig. 4a) is less forgiving, especially if there
are more days defined as a “hit” in the validation dataset than
for the forecast model. The TSS score (Fig. 4b) is more asym-
metric about the diagonal because it does not punish the mod-
els as strongly for false alarms. In both skill scores, a model is
not penalized as harshly if it overcounts hypersensitive days
but is punished strongly for undercounting them, more so in
the case of the TSS score.

The number of days with soil moisture content below the
breakpoint is dependent on the range of soil moisture of the
grid cell and on its breakpoint value. For any location to
achieve a perfect skill ETS or TSS value, not only does it have
to correctly have soil moisture below the breakpoint value on
exactly the same days as the validation dataset, but it would
also have to have the same number of days below the break-
point. Figure 4 provides a way to provide point-by-point scal-
ing for skill scores that account for the differing soil moisture
climatologies relative to their estimated breakpoints. This
puts the skill scores for breakpoints into perspective when in-
terpreting the results from the skill assessment.

Figure 5 shows models’ skill to forecast soil moisture on the
dry side of the breakpoint as a function of forecast lead using

FIG. 4. Maps of best attainable skill score for (a) ETS and (b) TSS based on the percentage of events that count as
a “hit” in the validation data (x axis) and the forecasts (y axis). Blue crosses indicate the EHD scenario in this study
where there is an equal 10% of the days in both the validation and forecast sets of events.
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TSS. Results are shown before and after renormalization of
skill scores using information in Fig. 4. We validate against
ERA5 because previous work has shown ERA5 compares
well to in situ measurements in representing the soil
moisture–temperature relationship and breakpoint values
(Benson and Dirmeyer 2021; Dirmeyer et al. 2021). A direct
comparison of the models’ soil moisture breakpoint values to
ERA5 would be an unfair measure of the model skill due to
the differences in the model derivations of soil moisture
(Koster et al. 2009a). Hence, each model is judged relative to
its own breakpoints.

The grid cell skill scores over the continental United States
have been spatially averaged for each forecast lead time to gen-
erate Fig. 5. Ideally, any value above 0 for either ETS or TSS is
considered skillful based on both measures of skill applied in
this study. The UFS prototypes, however, have a very limited
sample, available only for single forecasts initialized on the 1st
and 15th of the JJA months over 7 years. The results obtained
from this skill assessment only provide a glimpse into their cur-
rent performance with the expectation that the final product
will improve on the findings in this study.

Focusing first on initialization (lead 0), the forecast models
start out with imperfect skill even at initialization, demon-
strating potential problem in model initialization techniques.
The UFS prototypes on average appear to be more skillful
than the two SubX models at having soil moisture on the cor-
rect side of the breakpoint. ESRL and GEFS SubX models
are also skillful at capturing this relationship, albeit less so
than the UFS prototypes. There is noticeable decay in skill as
lead time increases for all models. The skill of the UFS proto-
types decays at a faster rate than the ESRL and GEFS mod-
els, becoming comparable by the end of the forecast. The low
skill scores in Fig. 5a arise by a combination of low hit counts
from the models on the dry side of the breakpoint, and the

significant disparities in the number of hypersensitive days over
the summer period between the reanalysis and the models.

The models’ skill in representing soil moisture relative to the
breakpoint is normalized by the best attainable skill in an effort
to isolate the impact of poor initialization and predictive skill
from the inaccurate soil moisture climatology (Fig. 5b). When
normalized, the overall TSS scores improve, but a clear separa-
tion emerges between GEFS and the other forecast models.
GEFS has the highest potential skill scores compared to the
other models, indicating its climatological distributions of soil
moisture relative to the breakpoint agree well with ERA5.
GEFS is thus underperforming in Fig. 5b either because of a
problem with the initialization of soil moisture in the model, or
a general inability to predict extreme heat regardless of land
surface conditions. The significantly lower skill of GEFS at
0-day lead in Fig. 5b argues for poor soil moisture initialization.

Meanwhile, the ESRL model and UFS prototypes show
much more of their potential forecast skill is being realized.
Nevertheless, these models would likely benefit from an im-
proved representation of model soil moisture distribution rel-
ative to the breakpoint and also soil moisture initialization.
Getting the climatology right would likely improve the skill in
these models.

The vertical lines in Fig. 5 are drawn across a lead that shows
maximum separation in the skill scores between the UFS proto-
types and other models: lead day 8. Maps of TSS for each model
at this lead are shown in Fig. 6. In general, the models do better
in the eastern part of the United States where breakpoint values
are found to be relatively higher, but soil moisture is also high.
The most skillful regions for most models are found in the areas
from the Mississippi basin eastward and in the Pacific North-
west. The models likely perform better in these regions because
the soil is usually on the wetter side of the breakpoint. We find
the high skill scores in this region are mostly skewed toward

FIG. 5. Time series of TSS for estimating model soil moisture relative to its breakpoint showing the evolution of skill
with respect to lead time for (a) the nonnormalized score and (b) the normalized score. Each lead is the spatially aver-
aged skill score over the study region.
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correct negatives (not shown)}that is, the correct prediction of
soil moisture above the hypersensitive regime. The models ap-
pear to have difficulty in areas where breakpoint values are
low in ERA5, especially in the Southwest. Accurate simulation
of land–atmosphere interactions in semiarid regions with low-
resolution models is a demonstrated problem, where evaporation
over small riparian zones can have major effects on regional tem-
perature (Barlage et al. 2021).

GEFS and ESRL are very similar in their spatial structure of
skill. The UFS prototypes appear noisier partly because of
smaller sample sizes and partly due to their higher spatial reso-
lution, leading to more small-scale features. The P7 prototype
(Fig. 6e) appears to be less skillful than the other prototypes
over the Mississippi basin. This finding raises questions because
P7 employs the newer Noah-MP land surface model and has an
upgraded boundary layer physics package that is expected to
improve skill.

Figure S3 shows the difference between the normalized and
original TSS scores from Fig. 6, highlighting regions that are
most affected when soil moisture climatology differences are
properly accounted for. The GEFS model shows only slight
improvement (Fig. S3a). The ESRL model and UFS proto-
types seem to have the majority of their adjustments in the
eastern and central United States, with the ESRL model

showing the greatest adjustment over the southern Great
Plains (Fig. S3b).

The ETS scores for soil moisture breakpoint as a function
of forecast lead in Fig. S4 reveal that when the models are be-
ing penalized for missing forecasts; that is, not correctly being
on the dry side of the breakpoint, they perform worse than
the TSS scores. For the nonnormalized ETS scores (Fig. S4a),
GEFS slightly outperforms ESRL. A distinction in skill of the
ESRL and UFS models from those of the GEFS model is evi-
dent after normalizing for soil moisture climatology relative
to the breakpoint (Fig. S4b). When normalized by their best
attainable skill scores (Fig. S4b), the models all depict vast im-
provement in skill, especially the ESRL model, which be-
comes the most skillful after the first few days of the forecast.
The skill values are mostly dictated by the low count of hits,
and the counts of false alarms and misses. This skill is skewed
toward the forecast of nonevents or correctly placing soil
moisture in the regime of less sensitivity.

The regional variations of the skill scores, particularly the TSS
scores, are difficult to discern unequivocally from the maps and
requires further examination. By dividing the study area into six
regions (land areas marked in Fig. 6b)}the Northwest (NW),
North Central (N), Northeast (NE), Southwest (SW), South
Central (S), and Southeast (SE)}the regional characteristics of

FIG. 6. Maps of the TSS of soil moisture relative to the breakpoint for lead day 8. The dashed lines across Fig. 6b in-
dicate the division of the study area into regions in subsequent analyses. The white colored areas are grid cells that
failed the threshold for the determination of breakpoint significance.
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skill are more clearly revealed (Fig. 7). In the GEFS and ESRL
models the Northwest shows the highest skill, while both models
show poor skill in the dry Southwest region. However, both re-
gions seem to have similar characteristics as lead increases,
indicating a west–east element in soil moisture values relative
to breakpoints. These models’ performance is very consistent
through the 30-day forecast period for both regions as well, show-
ing little or no decline. This persistence in skill might be an indica-
tion of high soil moisture memory during summer in the West
(e.g., Dirmeyer et al. 2009), highlighting the importance of proper
model initialization in both regions. The UFS prototypes also
perform poorly in the Southwest, but do not show as much sepa-
ration in skill from the other regions, especially for P7, which also
has the greatest skill in the Northwest. This is another result that
may be affected by the smaller sample size for UFS. However,
the evidently weaker soil moisture memory for the UFS proto-
types over the western regions is an interesting feature.

c. Extreme heat day skill

The root-mean-square error (RMSE) of maximum temper-
ature for day 1 (lead 0) is shown in Fig. 8. All models and pro-
totypes indicate a roughly south–north gradient of decreasing
fidelity in representing maximum temperature on the first af-
ternoon of the forecast across the United States. While ex-
treme heat is defined as a quantile relative to each model’s

climatology, the RMSE is an unqualified error. Although the
emphasis of this study is on extreme heat, this result is none-
theless a reflection of the models’ initialization quality. Un-
derstanding the source of the forecast errors may provide
relevant information in the determination of model processes
that impede their ability to predict extremes.

Consequently, the model mean bias is also calculated to
look for systemic temperature biases within the models and to
provide context for the succeeding analysis of extreme heat
days. All models have a cold bias in maximum temperature
over the Rockies, and all except UFS P7 have a warm bias
centered in the Great Plains (Fig. S5). The SubX models tend
to experience stronger and broader warm biases, while UFS
prototypes tend toward a notable cold bias that is strongest in
P7. ESRL has most of its warm bias in the Great Plains and
both ESRL and GEFS are too warm over coastal California,
where their low model resolutions may struggle to represent
the effects of coastal mountains. The UFS models and GEFS
also have a warm bias over the Southeast, while all models
show a cool bias over the Northwest. Figure S5 suggests that
the RMSE patterns of the models at initialization are a result
of a combination of systematic biases in the models and issues
with initialization.

Figure S6 depicts the value of the 90th percentile of maxi-
mum temperature over JJA for the 40-yr period from 1979 to

FIG. 7. Regional dependency of the TSS for soil moisture relative to the breakpoint across forecast lead days.
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2018 for ERA5}the reference threshold for EHD in the rean-
alysis. The Southwest experiences the highest 90th-percentile
maximum temperature threshold of up to 458C. A southwest–
northeast gradient can be seen with the U.S. Northeast having
average EHD thresholds around 258C. High terrain also has
lower threshold temperatures. Admittedly, it is understandable
why there might be a hesitation to categorize seemingly mild
temperature values as an extreme without taking into account
other factors that go into the classical definition of a heatwave.
However, a definition based on the statistical threshold of quan-
tiles allows for an assessment of the physical relationship based
squarely on the available data.

Each models’ ability to forecast EHD relative to its own cli-
matology has been determined. Figure 9 shows the domain
mean TSS for each model’s EHD forecasts as a function of
forecast lead. All grid cells for a fixed validation time period
have the same number of EHD days, so the best possible skill
score at any location is 1.0 (Fig. 4) and no adjustments are nec-
essary. The models are assessed to determine whether there is
an EHD on the same date for the same location as in the
ERA5. The ESRL model outperforms the other models in this
study during the first two weeks of the forecast. The P7 proto-
type outperforms the other UFS prototypes for at least the first
13 days. Overall, the models perform better at representing ex-
treme heat for the first 7–8 days than they do at having soil

moisture at the correct side of the breakpoint (Fig. 5a), but af-
terward their TSS skill for EHD decays faster as forecasts lose
contributions to skill from initial conditions.

Lead day 7 shows distinct spread across models, so it is selected
to observe the nature of the skill distribution across the United
States (Fig. 10). Here, the small sample size for the UFS forecasts
is evident in the spatial noisiness of the results. GEFS appears to
have no major regional dependency on EHD skill. Most models
show the highest skill over the southern and southeastern United
States and northern Mexico, while the UFS prototypes have gen-
erally high skill along the East Coast. UFS does better at repre-
senting hot days in regions that typically have relatively lower
heat anomalies as opposed to regions in the West that are in-
clined to have very high temperature during hot anomalies, par-
ticularly in the Southwest. UFS P7 shows improvement over P6
and P5, but it still struggles with skillful representation over the
northern Rockies and the Northwest.

The time series of ETS scores show the models being skillful at
initialization due to a significant hit count in EHD, but they be-
come indifferentiable after the first week of the forecast (Fig. S7).
UFS P7 performs best in this skill score while UFS P5 and P6 are
no longer the worst performers. Considering that ETS scores are
typically lower for rare events such as extreme heat, the results
show that the models are skillful at initialization but lack persis-
tently skillful forecasts beyond the first week.

FIG. 8. RMSE of maximum temperature (8C) at lead 0 (within the first 24 h of the start of the forecasts) for SubX
models and UFS prototypes.
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A further look into the spatial distribution of the TSS skill
scores shows that the models do not show much discernable re-
gional dependency (Fig. 11), in stark contrast to the soil moisture
results (Fig. 7). The limited sample size for the UFS prototypes
leads to the extra noisiness seen in the time series (Figs. 11d–f)
and could be responsible for the apparent increase in skill in the
Northwest and Southwest regions in week 4. UFS P7 also has
clear regional separation at day 0 with the Northwest performing
best and the Southeast worst, but separation is lost after a few
days. A larger set of forecasts with ensembles would help deter-
mine if this separation is significant and would shed light on the
behavior of the UFS prototypes.

The skill of the SubX models and UFS prototypes in regime
shifts (i.e., being on the correct side of the breakpoint) does seem
to be tied to their skill in predicting extreme heat. The better
model performance over the Mississippi basin and Northwest
CONUS implies a connection between soil moisture and extreme
heat skill that needs to be improved upon in model physics. Simi-
larly, the subpar performance of the models, particularly the UFS
prototypes in southwest CONUS also seems to support this as-
sessment. The UFS models seem to do better overall in repre-
senting breakpoints and soil moisture estimates than the SubX
models, while the ESRL model does better in capturing heat ex-
tremes but not as well in determining the right soil moisture–
maximum temperature relationship. It remains to make a direct
connection between soil moisture and EHD forecast skill.

d. Relationship between breakpoint and extreme heat
day skill

To determine whether proper breakpoint representation has
any effect on the skill of EHD prediction, we scrutinize the rela-
tionship between soil moisture estimates and EHD forecasts in

the models. Composites have been made to quantify the influ-
ence of breakpoint estimation skill on EHD prediction. The com-
posites obtain the skill of the EHD forecasts when the skill of the
soil moisture breakpoint representation is divided into four cate-
gories: hits, misses, false alarms, and correct negatives. The com-
posites are calculated at each grid point across the United States
and spatially averaged at each lead day.

Figure 12 and Fig. S8 show the influence of skillful soil moisture
relative to its breakpoint on extreme heat day prediction. The
blue lines denote the model skill of EHD prediction for days
when the model correctly had soil moisture drier than the break-
point (hits), and the false positive (orange) lines are for when a
model inaccurately indicated soil moisture was below the break-
point. In both instances, a model is simulating soil moisture to be
drier than the breakpoint. On the other hand, the green lines de-
note the model skill of EHD forecasts when the model incorrectly
simulates soil moisture to be above the breakpoint (misses), while
the correct negatives (red) signify the model EHD forecast skill
when it accurately represents soil moisture wetter than the break-
point. In these two cases, the soil moisture in the model is above
the breakpoint threshold. To determine whether the lines are sig-
nificantly different, uncertainty analysis is carried out by calculat-
ing the standard error of each forecast applying a bootstrap
sample-with-replacement method to each model’s set of forecasts,
repeating the process 50 times to determine confidence levels. The
error bars indicate one standard error of each forecast; overlap be-
tween a pair of models suggests skill for that lead is not signifi-
cantly different.

The results for TSS (Fig. 12) show that the models unanimously
appear to perform better at extreme heat prediction when they
are dry (i.e., in the hypersensitive regime), suggesting a key role
for soil moisture. Extreme heat forecast skill when there are

FIG. 9. TSS of extreme heat days spatially averaged across CONUS at each lead time for JJA.
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either hits or false positives outperforms the forecasts when there
are misses or correct negative skill for soil moisture, for up to a
week of forecast in GEFS and ESRL and up to 2 weeks for the
UFS prototypes. In other words, the models are better at predict-
ing extreme heat when they are in the hypersensitive regime, re-
gardless of whether that state concurs with the reanalysis. The
uncertainties indicate that the separation is usually significant.

The GEFS model (Fig. 12a) performs the worst when it misses
the dry soil moisture state, but all othermodels oddly performworst
for the correct negatives. It is possible that in thesemodels, although
the soil moisture is not dry enough to exceed the breakpoint, they
miss some other factor which influences the skill of EHD predic-
tion. The high performance of the “hit” composite is heartening, in
that it suggests an improvement in model soil moisture initialization
to better capture genuinely dry days could further improve EHD
skill. However, the elevated skill for false positives suggests there is
more to the problem than land surface initialization.

The comparable ETS scores (Fig. S8) behave similarly to TSS
scores. An exception is the ESRLmodel’s ETS scores (Fig. S8b),
which are more skillful both when it correctly represents dryness
relative to breakpoints and when it does not (i.e., when ERA5
indicates a hypersensitive regime). Otherwise, all models show
more lead times with the significantly highest skill for soil mois-
ture hits than for any other category.

4. Discussion and conclusions

In this study, the skill of several subseasonal forecast models
has been assessed to better understand how their representation
of land–atmosphere interactions and soil moisture initialization
influence their extreme heat prediction capabilities over the con-
terminous United States. The models have been compared to
ERA5, which is used as validation. They are assessed on their
representation of thresholds of soil moisture below which the
near-surface atmospheric temperature becomes more sensitive to
drying, which we call breakpoints. The models’ ability to predict
the 90th percentile of maximum temperature defined herein as
extreme heat days (EHD) is also analyzed. Composite studies
have been employed to parse possible connections between accu-
rate characterization of breakpoints and EHD predictive skill.

Breakpoints occur when drying soils lead to the shutting
down of evaporation and its associated cooling effect, and the
transfer of net radiation from land to atmosphere occurs mainly
through sensible heat flux (Benson and Dirmeyer 2021). The
decline of soil moisture across the breakpoint indicates a shift in
the sensitivity of land–atmosphere coupling in which the atmo-
sphere moves from a moderately sensitive regime, where tem-
perature gradually increases as soil dries, to a hypersensitive
regime where this response intensifies (the slope of piecewise
linear regression increases significantly). Most of the models

FIG. 10. Maps of the TSS of extreme heat days over CONUS for lead day 7. Blue color indicates areas with skill worse
than random guess.
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involved in this study appear to replicate the continental-scale
pattern of breakpoint distribution across the United States: low
soil moisture values at the breakpoint in the Southwest and
higher values in the Northeast. The breakpoint maps mirror the
maps of the summer soil moisture climatology (Fig. 2) and al-
though this result is seemingly obvious, it emphasizes the impor-
tance of the role of proper land surface representativeness in
forecast models and their potential to improve or hinder the
predictability of extreme heat as well as associated soil moisture
driven drought. Locations pass in and out of the hypersensitive
regime depending on the moisture content in the soil, but gener-
ally the forecast models effectively capture the tendency of
western regions to spend more days of the JJA summer in the
hypersensitive regime than regions in the east (Fig. 3), as seen
in the reanalysis. A major driver of the model performance ap-
pears to be soil moisture initialization.

The exact values of volumetric soil moisture for the break-
points of the models were not compared. Instead, the models
were assessed to determine whether their soil moisture con-
tent was below the breakpoint on the same dates as ERA5 at
each location. This approach was taken because the relative
position of soil moisture to the breakpoint is relevant for
land–atmosphere interactions. Ultimately, LSM soil moisture
is a derived parameter that describes the response of the
model to forcings and parameters, with fluxes being more

important quantities (Koster and Milly 1997). Hence, directly
comparing the breakpoint estimates of the models to the re-
analysis could be misleading. Therefore, the soil moisture
content of each model is validated relative to its own break-
points in order to quantify the relative responsiveness of each
model to the variations of its soil moisture.

The number of days either side of the breakpoint can vary
from location to location and model to model, and rarely
matches the climatological proportions from reanalysis. Such
biases affect skill metrics. The best attainable skill scores
when the number of days on either side of the breakpoint
does not match the ERA5 validation data have been deter-
mined (Fig. 4), and they strongly affect interpretation of the
results. TSS (Fig. 5) and ETS (Fig. S4) scores are only fair at
the time of forecast initialization, and they decline as the fore-
cast lead time increases. The models’ skill is much higher
when normalized by their best attainable skill, therefore ac-
counting for the models’ differences in representation of soil
moisture climatology relative to the breakpoint. Regionally,
the models generally performed best in the U.S. Northwest
and worst in the Southwest (Fig. 7).

Turning to forecasts of extreme heat, models mostly repre-
sent the mean state of maximum temperature properly at ini-
tialization when compared to ERA5 (Fig. 8). While there are
systemic temperature biases in the models (Fig. S5), they are

FIG. 11. Regional dependency of the TSS for extreme heat days across forecast lead days.
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not the sole cause of the lack of predictive skill. The models’
performance in EHD forecasts starts out skillful but decays
more rapidly than their soil moisture breakpoint skill. The
UFS prototypes tend toward good skill in the eastern part of
the United States and poorer skill in the northern Rockies
and Northwest (Fig. 10). The map of extreme heat days re-
veals that the prototypes fail to capture extreme heat in the
northern Great Plains but are skillful over the Mississippi ba-
sin. They struggle to replicate the magnitude of extreme heat
days in regions that have complex topography like the Rocky
Mountains.

There is noticeable improvement in skill across the evolu-
tion of the prototypes from UFS P5 to P7. However, inland
areas in the west of the study region that perform poorly in
the representation of dry extremes are also poor for extreme
heat forecasts. A more accurate representation of these re-
gime shifts could lead to higher accuracy in extreme heat pre-
diction. It is plausible that the problems with soil moisture
initialization also play a role in the rapid decay of EHD skill
in the models. Another potential reason could be misplaced
breakpoint values in forecast models due to problems
with model physics. Such problems could affect not only

initialization on the correct side of the breakpoint but also
models’ ability to effectively represent the difference in sensi-
tivity between the sensitive to the hypersensitive regimes.

The relationship between soil dryness relative to break-
points and EHD forecast skill was quantified using a compos-
ite analysis. The EHD forecast skill was categorized into
composite fields for when the skill of soil dryness relative to
the breakpoint was a hit, miss, false alarm, and correct nega-
tive, and calculated for each lead day. All models performed
better at predicting extreme heat in the first five to eight days
when they properly initialized soil moisture relative to its
breakpoint, and most models displayed significantly better
performance when they were drier, regardless of the observed
state (Fig. 12). Correctly predicting soil moisture on the dry
side of the breakpoint plays a significant role in improving
EHD forecast skill, yet simply having a dry model soil is seen
to improve EHD forecast skill even up to the second week
(Fig. 12 and Fig. S8). The evident connection between dry soil
and EHD skill is encouraging as it illustrates the potential for
better predictability of extreme heat amid numerous efforts
aimed at the improvement of soil moisture observations and
accurate data collection. More analysis or potentially model

FIG. 12. TSS for extreme heat day skill spatially averaged over the study region at each lead day for (a)–(c) SubX
models and (d)–(f) UFS prototypes with forecasts grouped into composites based on whether the soil moisture on
that day, relative to its breakpoint, scored a hit (blue), a false positive (orange), a miss (green), or a correct negative
(red).
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sensitivity studies would be necessary to disentangle the con-
tributing factors, whether improvement of soil moisture ini-
tialization relative to the breakpoint, model breakpoint
representation, or land–atmosphere coupling would contrib-
ute most to advancement in EHD predictability.

Overall, the GEFS and ESRL models seem to do relatively
better overall at extreme heat prediction than estimating soil
moisture dryness relative to the breakpoint. The UFS P7 on
the other hand, seems to be an improvement over earlier pro-
totypes particularly in the depiction of extreme heat. This ad-
vancement could be ascribed to the changes in the land
surface model and boundary layer parameterizations in the
most recent of the prototypes used for this analysis.

To summarize, the evaluation of the S2S models and UFS
prototypes reiterates the need for the focus on soil moisture
initialization and boundary layer physics in regard to the land
surface. Through breakpoint analysis, the results in this study
provide another methodology in which land surface hydrol-
ogy and land–atmosphere interactions can be examined in
forecast models using statistical methods to elucidate the soil
moisture–temperature between the land and the atmosphere
in these models. From the standpoint of model validation and
development, the soil moisture breakpoint presents several
challenges. The breakpoint itself is largely determined by soil
and vegetation properties that control wilting point, within
the domain of LSMs. But the position of any given day above
or below the breakpoint is determined by both land and at-
mosphere, and the ability of their corresponding models to
reach the proper balance in the water cycle. The impact of
breakpoint transitions on extreme heat sensitivity brings in
the energy cycle of both land and atmosphere. In a changing
climate, regions are more likely to shift into the hypersensitive
regime in the warmer months, leading to the possibility of
more severe heatwaves (Seneviratne et al. 2013; Berg and
Sheffield 2018; Schoof et al. 2019; Hirsch et al. 2021).

Beyond improved model physics, realistic initialization of
soil moisture has been shown to improve atmospheric predict-
ability over the boreal summer (Guo et al. 2011; Koster et al.
2011; Dirmeyer et al. 2018). Koster et al. (2009a) reasoned
against the direct transfer of soil moisture values between
models because it leads to model-inconsistent initializations
and consequently loss of skill, particularly in seasonal and lon-
ger time scale forecasts of meteorological quantities. That
study argued for the initialization of soil moisture using ad-
justed model statistics, based on anomalies scaled by model
means and standard deviations. Results from this study pro-
vide justification for the next step: consideration of the physics
of the critical points of soil moisture that demark different
coupling regimes between land and atmosphere (Hsu and
Dirmeyer 2021). Ensuring that soil moisture is initialized cor-
rectly relative to the breakpoint separating the sensitive from
the hypersensitive regimes, as well as the higher critical soil
moisture value that separates water-limited from energy-
limited regimes (not examined in this study) can help improve
prediction skill in the S2S models.

One caveat regarding the methodology used in this study is
that piecewise regression could be convolving other connections
in the soil moisture–temperature relationship not central to this

analysis, or that are unexplained by the presumed physical pro-
cesses linking soil dryness to heat. One example of this is over
the Northeast U.S. region where estimated breakpoint values
are more likely indicators of changes in evapotranspiration and
the predisposition of that region to precipitation changes (Koster
et al. 2004). If soil moisture in a humid location never drops be-
low the local breakpoint value, it will not be present in the data
and the piecewise regression will seize on some other artifact in
the data. It is also important to remember that these models
were validated against the ERA5 and, while reliable, it is not an
infallible representation of Earth system processes, having some
level of model dependence of its own.

It is evident through this study and others that drier soil con-
ditions contribute to extreme heat through the changes in the
partitioning of surface fluxes (Miralles et al. 2012; Wulff and
Domeisen 2019). This connection between soil moisture and
temperature extremes provides a potential source of improved
predictability of hot extremes especially at subseasonal to sea-
sonal (S2S) time scales where informed decisions for policy
makers are pertinent. S2S forecast models appear to have room
for improvement as this relationship between soil moisture and
temperature extremes is currently not well reproduced. Finally,
while this study was carried out over CONUS, the methodology
can be applied elsewhere characterizing the nature of land–
atmosphere interactions in various regional climates and diag-
nosing model strengths and limitations across those regions.
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